Is There a Spectral Theory for All Bounded Linear Operators?
نویسندگان
چکیده
What Is Spectral Theory? By spectral theory we mean the theory of structure of certain bounded linear operators on a Hilbert space. In a broader sense, the history of spectral theory goes way back to the nineteenth century, when the objects of study used to be infinite systems of linear equations and integral equations. The subject was revolutionized in the late 1920s by von Neumann, when he defined the notion of an abstract Hilbert space and considered bounded linear operators on it. In this modern sense a successful spectral theory was soon obtained by Riesz for all compact operators as a direct extension of the theory of finite square matrices. By the early 1930s, von Neumann had obtained a satisfactory spectral theory for all normal operators, with self adjoint (or Hermitian) operators and unitary operators as important special cases. Spectral theory has evolved further since then; a vast amount of work was done on extending spectral theory to various Banach algebras. However, efforts to extend spectral theory to all bounded linear operators on a Hilbert space have met with resistance so far. This will be the problem we concentrate on in this article. To be explicit, the problem we consider is the existence of a
منابع مشابه
ON FELBIN’S-TYPE FUZZY NORMED LINEAR SPACES AND FUZZY BOUNDED OPERATORS
In this note, we aim to present some properties of the space of all weakly fuzzy bounded linear operators, with the Bag and Samanta’s operator norm on Felbin’s-type fuzzy normed spaces. In particular, the completeness of this space is studied. By some counterexamples, it is shown that the inverse mapping theorem and the Banach-Steinhaus’s theorem, are not valid for this fuzzy setting. Also...
متن کاملSome Properties of Fuzzy Norm of Linear Operators
In the present paper, we study some properties of fuzzy norm of linear operators. At first the bounded inverse theorem on fuzzy normed linear spaces is investigated. Then, we prove Hahn Banach theorem, uniform boundedness theorem and closed graph theorem on fuzzy normed linear spaces. Finally the set of all compact operators on these spaces is studied.
متن کاملINTUITIONISTIC FUZZY BOUNDED LINEAR OPERATORS
The object of this paper is to introduce the notion of intuitionisticfuzzy continuous mappings and intuitionistic fuzzy bounded linear operatorsfrom one intuitionistic fuzzy n-normed linear space to another. Relation betweenintuitionistic fuzzy continuity and intuitionistic fuzzy bounded linearoperators are studied and some interesting results are obtained.
متن کاملSubspace-diskcyclic sequences of linear operators
A sequence ${T_n}_{n=1}^{infty}$ of bounded linear operators on a separable infinite dimensional Hilbert space $mathcal{H}$ is called subspace-diskcyclic with respect to the closed subspace $Msubseteq mathcal{H},$ if there exists a vector $xin mathcal{H}$ such that the disk-scaled orbit ${alpha T_n x: nin mathbb{N}, alpha inmathbb{C}, | alpha | leq 1}cap M$ is dense in $M$. The goal of t...
متن کاملStability of essential spectra of bounded linear operators
In this paper, we show the stability of Gustafson, Weidmann, Kato, Wolf, Schechter and Browder essential spectrum of bounded linear operators on Banach spaces which remain invariant under additive perturbations belonging to a broad classes of operators $U$ such $gamma(U^m)
متن کامل